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ABSTRACT

The E and splittings, predicted to be equal in the SU(6) quark

{r]

model, are shown to differ because the smaller slze of the £ wave function
enhances the short range hyperfine interaction. The change in the relative
metion of a u~s pair in the hyperon produced by a change in the mass of the
third quark is not a simple scale change and 1s sensitive to details of the
interquark potential. This effect 1s absent in rhe harmonic oscillator wodel,
where the third quark 1s completely decoupled from the relative motion within
the other pair, but is appreciable and has the right order of wmagnitude in the

logarithmic potential model.
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The nass differences between corresponding baryon states in the 1/2+
octet and the 3/2% decuplet have been described in the quark model as due to a
two~body hyperfine interaction between quark pairs.1’2'3 The relations
between hyperfine splittings in different baryons have been found to be in

good agreement with experiuant. But the discrepancy with the prediction
M(E*) = M(E) = M(I*) - M(Z) (L)

is puzzling." The LHS is 216 MeV, the RHS is 192 MeV. Although this
difference is only 127 and could be dismissed as less than the precision
expected for such a crude model, it 1s tempting to ask whether this diffe;encé
is a physically iateresting signal above the noise.

The pair of identical quarks, nonstrange in the I, strange in the =, is
always in the spin triplet state and does not contribute to the hyperfine
splitting. With SU(3) symmetric baryon wave functions ;he strange-nonstrange
palrs whose spin couplings are different in the 3/2% and 1/2%7 states have the
same wave functions in the I and £ and therefore glve the same hyperflne
splitting.

A discrepancy with the relation (1) suggests that SU(3) breaking makes

the wave functions of the strange-nonstrange pairs different in the I and

the =. Since the Z is the more massive, it is natural to suggest that
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the The short range hyperfine
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wave function has a smaller radius.
interaction is then larger. However, quantitative investigation® of SU(3)
symmetry breaking in the Isgur—¥arl harmonic oscillator model® does not

significantly alter the prediction (1).

We point out in this paper that the null result in the Isgur-Karl model



arises from peculiarities of the harmounic oscillator potential, and that
effects of the right sign aand order of magnitude are obtained with other
potentials, such as the Quigg—-Rosner logarithmic potential.7 The underlying
physical difference i1s the separability of the two relative degreaes of freedon
found only in the harmonic potential and wot in other potentials. In the
harmonic oscillator model the relative motion of one quark with respect to the
center of mass of the other pair is completely decoupled from the relative
motion within the pair. Changing the mass of the odd quark only changes the
size of its mwotion relative to the other pair. The size of the pair wave
function is unaffected. In other potentials the ﬁotion of the third quark is
coupled to the overall size of the entire wave function. -

This effect could be calculated quantitatively by solving the three-body
problem for the case of unequal masses in different potentials. Rather than
undertaking such an ambitious program we obtain approximate estimates of the
effect by simpler methods. Qualitative and semi-quantitative features are
obtained by using the virial theorem and scaling properties of wave fuactions
for systems with nearly equal masses, with a small mass difference considered
as a perturbation.

Consider a simplified model in which the strange-nonstrange pair whose
hyperfine interaction 1s being studied is replaced by a pair of identical
quarks whose reduced mass is equal to the mass of the strange-nonstrange

pair. Our fictitious quarks then have the mass
mq = ZmumS/(mu + ms) . (2)

We study the change in the hyperfine interaction of this quark pair,



denoted as quarks number 1 and 2, as a function of the iwass myg of the third
quark. The qualitative features of this effect can bz seen by exanining the

behavior of the kinetic energy of the relative wotion of the 12 pair,

2

Tip = Pyp/2my, (3a)

where 3ij = (51 - §j)/2 is the relative momentun of the pair ij and mij

is the reduced mass of the pair. Since only my is changed, M3y = Myg is
changed but myo remalns unchanged. The expectation value of the relative

Kinetic energy is glven by the virial theorenm
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3b)
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31 31512
where the potential V 1is assumed to be the sum of two—body potentials
Vo= Vyp(rgo) + Vya(ryg) + Vg, (2y,) - (3e)

The hyperfine interaction in a two-body system is assumed to ba
proportional to the square of the wave function at the origin. The
expectation value of this interaction is related by a well known theorem to
the expectation value of the derivative of the potential.8 This theorem gives

an expression very similar to (3b) for the three-body system,
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wvhere ¥ {is a constant depending upon the strength of the interaction and the
particle masses.

Consider the case of a power law potential

= U (4)

where the derivative has been used in the definitlon (4) in order to include
the case of the log potential, o = 0, as well as all power law potentials.

Substitutiag Eq.(4) into Eq.(3b) then gives

U, a i ,.2 o2 a _ 2 o2 2 a2 a _ 2 a-=2
Typ? =3 STpp v g (Fpfyy + Tpy X3 %py" +ri,mg " + g - war )
(5a)
_u 1 a a 1 2 a2 a=2, _ 2 a2 2 o2
=g Fpp t g (Fpy P rg) g [ (ryT H gy YY) - (g 7,,T T T

This can be rewritten

_ U o 1 2-a _ 2-a
<> =5 <r12[1 + Z.{(rlz/r23) + (0, /rq)
(5h)
a2 2., 2 2 . -
SSTT A (AR oD L S b

Similarly



hyp _ o-1 1 - 2-a
Vipg = Kmp,<eot[1 kg {Cr ey )T (e, /)
(5¢)
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+(ry3" = Ty - e LD

These expressions (5) illustrate the qualitative behavior of the relative
motion of the 12 pair as a function of the mass m3. For the symmetric case,
m; = my = my, expectation values are symmetric under zny permutations of the

indices 1, 2 and 3. The two terms in the square bracket of Eq.(5a) cancel and

=30
sym 4

<T12>sym = <T23>sym - >

<r$j> . (6a)

<T31

For the harmonic oscillator potential, o = 2, Eq.(5a) simplifies and the
result (6a) is seen to hold for all values of mg. Thus <T;,> is independent
of the motion and mass of particle 3, as expected. However, for o < 2, the
expression depends upon the motion of particle 3. In particular, in the

‘12 T12
limit w5 + 0, where Ty3 = Tgy >> Figs 7— ~ 7 0, only the first term on

23 31
the right hand side of Eq.(5b) survives, and

_ U L
Limit <T12> = §-<r12> .
m3+0 {(6b)

a2
This is two-thirds of the value for the symmetric case. Since the kinetic
energy scales like the inverse of the mean square radius, <p%j> « 1/<r%j>, we
see that for a < 2 decreasing the mass of particle 3 not only makes the wave
function have a larger radius for the motion of particle 3 relative to

particles 1 and 2 but also affects the relative motion of 1 and 2 and makes

its radius larger.



Similar effects are seen in the hyperfiae {nteraction (5¢)-. For the

harmonic oscillator case, o = 2, Eq.(5¢) slnplifies to give

hyp - .
(V177 ] ey = (3/2)%m ,<x > (6c)
This 1s again independent of the motion and mass of particle 3, as expacted.
However, for a < 2 the expression (5c¢) depends upon the mass of parcicle 3,
and in the limit my = 0, the result analogous to (6b) is obtained as all the

terms in (5c¢) vanish except for the first term.

Limit v?ip = K m12<r?;1> . .
m3+0 (6d)

a2

This result is again two~thirds of the value for the harmonic oscillator
case and shows that decreasing the mass of particle 3 increases the overall
size of the wave function Including the relative motion of particles 1 and
2. However, a simple relation analogous to (6a) does nét exist for the
hyperfine interaction in the symmetric case because the two terms in the
square bracket do not cancel. The kinetle energy has simpler properties than
the hyperfine interaction because the virial theorem glves a siwple expression
for the total kinetic energy and there is no analogous simple expression for
the total hyperfine interaction.

fgs.(6) show another qualitative difference between the harmonic
oscillator potential and potentials like the Coulomb and logarithmic
potentials which are singular at the origin. TIncreasing all masses by the
same factor decreases the slze of the system and increases the hyperfine

Interaction. This effect can be computed simply by taking the logarithmic



derivative of Eq.(5c) and scaling the wave functions

—
d Tog m

d

e OYP d
log V J 12) + d log n

-1
= '12 4 " dTog m j

J

(log m log(r: > (6e)

where m denotes a mass scale parameter. Since all masses scale by the s:ae

factor, d{log mij) = d{log n) for all ij and

d hyp - 1 -a_ 3
d log m [108 VlZ J L 2+a 2+ (6£)

There are two independent contributions, the direcf contribution from m o
and the effect of scaling of the wave function. For the oscillator potenéialr
the two factors myo and <r%§1> work in opposite directicns, with the
increase in m;, dominating over the decrease in <r%§l>. For potentials with
a < 1, the two factors in (6d) work in the same direction. The result is a
strong a dependence with values of 3/4, 3/2 and 3 respectively for the
oscillator, log and Coulomb potentials. For the case where rq changes and
my, is unchanged, the analog of Eq.(6e) shows that the entire effect comes
from changes in <r%§l> which has opposite signs for the same scale change in
the wave function in the cases of a > 1 and o < 1.

Eqs.(5) show that the relative kinetic energy and the hyperfine
interaction depend not only upon the size of the system but also on
expectation values of operators depending upon correlatioas between different
pairs. We now attempt to obtain a quantitative estimate of the effect which
is insensitive to assumptions about correlations. For this reason wve work
with the relative kinetic energy (5a) which is less sensitive to these

correlations and should have the same qualitative scaling bzhavior as the



hyperfine interaction. MNote, however, that in any atteapt to solve the three
body problem numerically, the expression (5c) may give a better value for the
hyperfine interaction than the direct calculation of wave functions at the
origin, because of arguments demonstrated in ef.§.

We now attempt to estimate this effect quantitatively. Our unperturbad
wave function ?O is defined as the exact solution of the three-body problenm
with the real two-body interaction for the case where all quarks have equal
masses given by Eq.(2). The change in the wave function produced by a small
change 5m3 in my 1 assumed to be cxupressed by changing the scale of the
relative co-ordinate ryp by a factor 1 + x and the scales of the relative
co-ordinates ry3 and r3; by a factor 1 + A, where « and A are

small. The expectation value of any function F(rlz,r23, r31) of the relative

co-ordinates in this perturbed wave function is then
<T|F(r12,r23,r31)[?> = <wolp[(1 + KIr (1 + A)r,,, (1 + A)r3l][wo> . (D)

The change in the expectation values of the kinetilc energy Tij of the

relative motion of the 1j pair is given to first order in 5m3, k and A

by
2
8(p]5)
§<T12> = —EEE—- = =2k <T12> (83)
<p5> 51y
8<T 4> = &KT, > = §( 2”23] = -2\ <T,p> - s <Tya> - (8b)

The values of <Tij> can also be calculated by substituting Eq.(7) into

the expression (5a) cbtalned from the virial theorem and the analogous
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expression for <T,,> obtained by cyclic permutation on Fgq.(52). Thus
7P 23

. _yu Ao o 1 a, o a
<'112> -+ 6<T12> =5 (1 + x) iy + 7 (1 + X)) (r23 + r31)
(9a)
-2 2 o2 a-Z o 2 2
[(l + K) (L + ) l2(1:23 + r31 - (1 + A) (r 31 Tyq + r23r31 3>
L oo a oo
<T23> + 6<T23> =5 <1 + ) r2 4 (1L + A) r + (1 + k) rl2
o= 2 o2 o~ 2 o=2
+-— [(L -+ A) r23(l + A) 31 + (1 + ) 12 {(9b)
a—2 2 a—2 a-2 2 a—2 )
- (1 + K) (L + X 12 31 - (1 4+ X) (1 + k) 31 12 > .

Combining Eqs.{6a), (8) and (9) and using the permutation symmetry of the wave

function then gives to first order in x and A,

_ 2 1 _ o
8<T, > = 5 <Tij> [ak + 5 ah + (k x)cpa] 2.<<Tij> (10a)
2 5 1 1 Sm, 4
8<Tyy> = 5 <T; > [For+g e+ (A -x) | = (- 1]123]<Tij> (10b)
where <r2 ra_z
o6 =X I g (10¢)
Q o)
{r,.>
ij
Sclving these equations (10) for «k and X glves
2(2¢ ~a) Sm
K= = a T Iy(e AT 22 (11a)
« o a T3
G{a + ¢+ 3) Sm
A= - o 23 (11b)

3(a + 2)(a + 4 + 2¢a) m23
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From Eq.(1l2c) we see that k = 0 for the harmonic oscillator potential
where o =2 and ¢, = 1. This again shows no effect on ry, from
changing m,3  in the harmonic case.

For the log potential, a = 0

_ 23
0 =T33 +E e (12a)
If the hyperfine interaction VE%p between quarks 1 and j 1s assumed

to scale like the square of the wave function of the palr 1j at the origin,

hyp . 2
6<V12 > 6<?12(0) > ~ ¢ 6m23

hyp. 70" T3, = (¢ + 2]( m ) - (12b)
<Vl2 > <‘?12(o) > o 23

A better result is presumably obtainable by using Eq.(5c), but 1is more
complicated because it depends on several correlation parameters. Ve
therefore use (12b).

In the unperturhbed state, my3 = mq/Z, vhere m is given by

q

equation (2). For the ¥ and E systens which change my in opposite

directions from the symmetric state,

(6m23] L sza] _ (mS - mu) 1 (13
™)3'g m3y e gm0
vhere the numerical value is obtained by setting msfmu = 3/2. Then
h h
(v Py - (v Py, 4, ) (m = mu)] 1 b | (o
= = ~ = ] . 1
vhyp ¢o + 2 m + o 5 ¢o + 2
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Evaluatioa of by requires the knowledgzs of the wave fuactlon. lowever froan

the symmetry

_ _ o2 2 1 -1 _ -1,2
$ = Lrir,L> = <L23r12> 1+ §'<(r12r23 r23r12) > >1. {15

This gives the lower bound

thyp 1 (ms - mu)
> =
3 ( o

1
- ~ (16)
thp m_ + mu) 15

The effect 1s thus seen to have the right sign and the right order of
magnitude. If harmonic oscillator wave functions are used to evaluate ¢;,
using the Isgur-Karl relative variables p and A, $o = 2.5 1s obtained,
wvhich gives 1/9 or 117 for thyplvhyp'

A similar effect should be present in the hyperfine interaction between
two nonstrange quarks when tihe mass of the third quark is changed from m
2

to wm,. The prediction

M, - My o= (1/2)(2Mz

A + ME - SMA) (17)

*

relates the wud hyperfine splitting in the A-N system to the I#*-jF-A
system. Here the LHS is 294 MeV and the RHS 1Is 307 MeV, giving a smaller
effect of 4% in the same direction as the discrepancy in (1), and attributable
to the change 1Iun the size of the wave function. The reason for the smallness
of the effect in this case, as compared with (1) and (16) is unclear.

However, the prediction (17) is not as firm as (1) because of differences in

the wave functions and the necessity to subtract out the contribution from
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strange-nonstrange pairs. The nucleon, £ and = all have the same gpin
couplings and the SU(6) breaking in the wave functions due to the hyperfine
interaction itself is the same in all cases and should not affect the
relation (1). However, the spin couplings in the A are diFferent and the
hyperfine interaction which gives attraction between tha ud pair and
repulsion for the us and ds pairs has no simple counterpart in the nucleon
and A. These effects could give additional contributions to change the
deviation from the relation (17).
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